Polynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEs
نویسندگان
چکیده
A procedure for the numerical approximation of high-dimensional Hamilton-JacobiBellman (HJB) equations associated to optimal feedback control problems for semilinear parabolic equations is proposed. Its main ingredients are a pseudospectral collocation approximation of the PDE dynamics, and an iterative method for the nonlinear HJB equation associated to the feedback synthesis. The latter is known as the Successive Galerkin Approximation. It can also be interpreted as Newton iteration for the HJB equation. At every step, the associated linear Generalized HJB equation is approximated via a separable polynomial approximation ansatz. Stabilizing feedback controls are obtained from solutions to the HJB equations for systems of dimension up to fourteen.
منابع مشابه
Overcoming the curse of dimensionality: Solving high-dimensional partial differential equations using deep learning
Developing algorithms for solving high-dimensional partial differential equations (PDEs) has been an exceedingly difficult task for a long time, due to the notoriously difficult problem known as “the curse of dimensionality”. This paper presents a deep learning-based approach that can handle general high-dimensional parabolic PDEs. To this end, the PDEs are reformulated as a control theory prob...
متن کاملExistence and Uniqueness to the Cauchy Problem for Linear and Semilinear Parabolic Equations with Local Conditions
We consider the Cauchy problem in R for a class of semilinear parabolic partial differential equations that arises in some stochastic control problems. We assume that the coefficients are unbounded and locally Lipschitz, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution by approximation with linear parabolic equations. The line...
متن کاملMarkov processes and parabolic partial differential equations
In the first part of this article, we present the main tools and definitions of Markov processes’ theory: transition semigroups, Feller processes, infinitesimal generator, Kolmogorov’s backward and forward equations and Feller diffusion. We also give several classical examples including stochastic differential equations (SDEs) and backward SDEs (BSDEs). The second part of this article is devote...
متن کاملMachine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations
High-dimensional partial differential equations (PDE) appear in a number of models from the financial industry, such as in derivative pricing models, credit valuation adjustment (CVA) models, or portfolio optimization models. The PDEs in such applications are high-dimensional as the dimension corresponds to the number of financial assets in a portfolio. Moreover, such PDEs are often fully nonli...
متن کاملMixed Interior Penalty Discontinuous Galerkin Methods for Fully Nonlinear Second Order Elliptic and Parabolic Equations in High Dimensions
This article is concerned with developing efficient discontinuous Galerkin methods for approximating viscosity (and classical) solutions of fully nonlinear second-order elliptic and parabolic partial differential equations (PDEs) including the Monge–Ampère equation and the Hamilton–Jacobi–Bellman equation. A general framework for constructing interior penalty discontinuous Galerkin (IP-DG) meth...
متن کامل